A Graphic Presentation of Some Bitopological Spaces

Mabruk Ali Sola * Osama Abdalsalame Alshfeh**

Abstract:

Given a bitopological space (X, τ_1, τ_2) , where both (X, τ_1) and (X, τ_2) belong to a certain class of topological spaces, we will show that there exist a graph $G = (X, s_1, s_2)$ which will give a graphic presentation of the bitopological space (X, τ_1, τ_2) .

Keywords: Graph; Bitopology; maps; Idempotent.

Preliminaries:

1-1. Definition: If X is a set, a map $s: X \to X$ is said to be an idempotent map if $s \circ s = s$.

1-2. Lemma: If $s: X \to X$ is any idempotent map, $C_s: P(X) \to P(X)$ defined by $C_s(A) = A \cup s(A)$ for any $A \in P(A)$, then C_s is a closure operation in the set X.

Proof: see [1].

1-3. Definition: If X is a non-empty set, $s: X \to X$ is an idempotent map. Let τ_s denotes the topology on X such that: $\overline{A} = A \cup s(A)$ for any $A \subset X$. We call τ_s the topology induced by the idempotent map s.

1-4. Definition: A space X is said to be $T_{\frac{1}{2}}$ space if and only if each one-point set is either open or closed in X.

The following theorem is 1.5.6 of [1].

^{*} Department of Mathematics- Tripoli University

^{**} Department of Mathematics- Zawia University

- 1-5. Theorem: If τ_s is the topology induced by an idempotent map $s: X \to X$, then the frontier of any one-point set is either empty or a one-point set.
- 1-6. Theorem: If τ_s is the topology induced by an idempotent map $s: X \to X$, then (X, τ_s) is a $T_{1/2}$ space.

Proof:

Let $x \in X$, since $s: X \to X$ is an idempotent map then either we have s(x) = x or s(x) = y , $x \ne y$, and s(y) = y.

If s(x) = x, then $\overline{\{x\}} = \{x\} \bigcup s(\{x\}) = \{x\}$. So $\{x\}$ is a closed set.

If s(x) = y where $x \neq y$, s(y) = y. Then $\{x\} = \{x\} \cup s(\{x\}) = \{x, y\} = \{x\} \cup Fr\{x\}$, and so by 1-5 $Fr\{x\} = \{y\}$. Since $\{x\}^\circ = \{x\} \setminus Fr\{x\} = \{x\} \setminus \{y\} = \{x\}$, so $\{x\}$ is an open set.

1-7. Definition: A graph G is a triple (V, E, ψ) , where V is a non-empty set called the set of vertices, E is a set disjoint from V called the set of edges, and ψ is a map from E into $V \times V$ called the incident map.

A graph $G = (V, E, \psi)$ is said to be directed graph if each edge is associated with an ordered pair of $V \times V$.

Now let $G = (V, E, \psi)$ be a directed graph, $\pi_i : V \times V \to V$ be the projection maps for i = 1,2, and let $d_i = \pi_i \circ \psi$ for i = 1,2. If we put $X = V \cup E$ and we let $s_i : X \to X$ be the map defined by:

$$s_i(x) = \begin{cases} x & \text{if} \quad x \in V \\ d_i(x) & \text{if} \quad x \in E \end{cases}$$

for i = 1,2. Then s_i is an idempotent map for, and s_1, s_2 satisfy the following composition property:

$$s_2 \circ s_1 = s_1 \circ s_1 = s_1$$
 , and $s_1 \circ s_2 = s_2 \circ s_2 = s_2$

So following [4] we can formalize the following equivalent definition of a directed graph.

1-8. Definition: A directed graph G is a triple (X, s_1, s_2) , where X is a non-empty set and s_1, s_2 are two unary operations on X

satisfying the following composition property $s_2 \circ s_1 = s_1 \circ s_1 = s_1$, and $s_1 \circ s_2 = s_2 \circ s_2 = s_2$.

1-9. Definition: If X is a set and τ_1, τ_2 are two topologies on X, then the triple (X, τ_1, τ_2) is called a bitopological space.

Notice that if (X, τ_1, τ_2) is a bitopological space, $A \subset X$ then A is said to be τ_i -open if $A \in \tau_i$ for i = 1, 2. And we say that (X, τ_1, τ_2) is a $T_{1/2}$ bitopological space if both $(X, \tau_1), (X, \tau_2)$ are $T_{1/2}$ spaces.

Graphic presentation:

In [4] Wald mar Korczynski gave a topological presentation of a graph and in [1] a topological presentation of a directed graph was given. In the following theorem, we will prove that the other way around works for a certain class of bitopological spaces.

2-1. Theorem: If (X, τ_1, τ_2) is a $T_{\frac{1}{2}}$ bitopological space, $Fr_{\tau_i}\{x\}$ is a one-element set or empty for all $x \in X$ and all i, and $\{x\}$ is τ_1 -closed if and only if $\{x\}$ is τ_2 -closed for all $x \in X$. Then there exist a graph $G = (X, s_1, s_2)$ presenting the bitopological space (X, τ_1, τ_2) .

Proof:

Let $s_i: X \to X$ defined by:

$$s_{i}(x) = \begin{cases} y & \text{if} & Fr_{\tau_{i}}\{x\} = \{y\} \\ x & \text{if} & Fr_{\tau_{i}}\{x\} = \{x\} \\ \end{cases} \text{or} \quad Fr_{\tau_{i}}\{x\} = \phi$$

Then s_i is an idempotent map for all i and $s_2 \circ s_1 = s_1$, $s_1 \circ s_2 = s_2$. For let $x \in X$.

Case (1) If $\{x\}$ is closed. Then $Fr_{\tau_i}\{x\} = \{x\}$ or $Fr_{\tau_i}\{x\} = \phi$. So $(s_i \circ s_i)(x) = s_i(s_i(x)) = s_i(x)$.

Also $(s_2 \circ s_1)(x) = s_2(s_1(x)) = s_2(x) = x = s_1(x)$,

and
$$(s_1 \circ s_2)(x) = s_1(s_2(x)) = s_1(x) = x = s_2(x)$$
.

Case (2) If $\{x\}$ is open. Then $Fr_{\tau_1}\{x\} = \{y\}, y \neq x$, and $Fr_{\tau_2}\{x\} = \{z\}, z \neq x$.

If $\{y\}, \{z\}$ are τ_i -closed. Then since $Fr_{\tau_i}\{t\} = Fr_{\tau_i}[Fr_{\tau_i}(\{x\})] \subset Fr_{\tau_i}\{x\} = \{t\}$, where t = y or z; that is $Fr_{\tau_i}\{y\} \subset \{y\}$, $Fr_{\tau_2}\{z\} \subset \{z\}$. So $Fr_{\tau_1}\{y\} = \{y\}$ or $Fr_{\tau_1}\{y\} = \phi$, and $Fr_{\tau_2}\{z\} = \{z\}$ or $Fr_{\tau_2}\{z\} = \phi$. Hence $(s_i \circ s_i)(x) = s_i(x)$ for i = 1, 2. Also $(s_2 \circ s_1)(x) = s_1(x)$, and $(s_1 \circ s_2)(x) = z = s_2(x)$.

The case $\{y\}$ is τ_1 -open or $\{z\}$ is τ_2 -open is impossible. Because without loss of generality if $\{y\}$ is τ_1 -open and since $\{x\}$ is τ_1 -open, then $\phi = Int_{\tau_1}(Fr_{\tau_1}\{x\}) = Int_{\tau_1}\{y\} = \{y\}$ a contradiction.

Therefore s_1, s_2 satisfy the composition property:

 $s_2 \circ s_1 = s_1 \circ s_1 = s_1$, and $s_1 \circ s_2 = s_2 \circ s_2 = s_2$ And hence the triple (X, s_1, s_2) is a graphic presentation of the bitopological space (X, τ_1, τ_2) .

Example:

Let (X, τ_1, τ_2) be the bitopological space where $X = \{a \ , b \ , c \ , e_1 \ , e_2 \}$ and ,

 $\tau_{1} = \{ \phi , X, \{b\}, \{e_{1}\}, \{e_{2}\}, \{b, e_{1}\}, \{b, e_{2}\}, \{e_{1}, e_{2}\}, \{a, e_{1}\}, \{c, e_{2}\}, \{a, b, e_{1}\}, \{a, e_{1}, e_{2}\}, \{b, c, e_{2}\}, \{b, e_{1}, e_{2}\}, \{c, e_{1}, e_{2}\}, \{a, b, e_{1}, e_{2}\}, \{a, c, e_{1}, e_{2}\}, \{b, c, e_{1}, e_{2}\}, \{a, b, e_{1}, e_{2}\}, \{a, e_{1}, e_{2}\}$

 $Fr_{\tau_1}(\{e_2\}) = \{c\}.$

Let
$$s_1: X \rightarrow X$$
 be the map defined by
$$: s_1(x) = \begin{cases} x & \text{if} & x \neq e_1 \text{ and } x \neq e_2 \\ a & \text{if} & x = e_1 \\ c & \text{if} & x = e_2 \end{cases}$$

And $Fr_{\tau_2}(\{a\}) = \{a\}, Fr_{\tau_2}(\{b\}) = \{b\}, Fr_{\tau_2}(\{c\}) = \{c\}, Fr_{\tau_2}(\{e_1\}) = \{c\},$ and $Fr_{\tau_2}(\{e_2\}) = \{b\}.$. مجلة العلوم الأساسية والتطبيقية 2016ف

Let
$$s_2: X \rightarrow X$$
 be the map defined by:

$$s_2(x) = \begin{cases} x & \text{if} & x \neq e_1 \text{ and } x \neq e_2 \\ c & \text{if} & x = e_1 \\ b & \text{if} & x = e_2 \end{cases}$$

Then figure 1.1 is the directed graph (X, s_1, s_2) which presents the bitopological space (X, τ_1, τ_2)

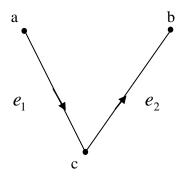


Figure 1.1

عرض بيانى لبعض الفضاءات التبولوجية الثنائية

- المبروك على صولة *
- أسامة عبدالسلام الشفح **

المستخلص:

إذا أعطي أي فضاء توبولوجي ثنائي (X, τ_1, τ_2) حيث كل من (X, τ_1, τ_2) مين فضاء توبولوجي ثنائي التوبولوجية. في هذه الورقة سوف محدد من الفضاءات التوبولوجية. في هذه الورقة سوف نثبت بأنه يوجد بيان موجه $G=(X,s_1,s_2)$ يمثل عرض للفضاء التوبولوجي الثنائي (X,τ_1,τ_2) .

^{*}قسم الرياضيات - جامعة طرابلس-. طرابلس - ليبيا

^{* *}قسم الرياضيات – جامعة الزاوية-. الزاوية-. ليبيا

References:

- 1. Alshfe h Osama. A, A Topological presentation of directed graphs, Master thesis. The 7th of April university (2006).
- 2. Bondy. J. A and Murty. U. S. R, Graph Theory with Applications, London (1976).
- 3. Kelly. J. C, Bitopological Spaces, Proc. London. Math. Soc. (3), 13 (1963), 71-89.
- 4. Korczynski Waldemar, On a topological presentation of graphs, Demonstratio Mathematica, (37) 4 (2004) 761-772.
- 5. Willard Stephen, General Topology, Addison-Wesley Publishing Company, Inc. (1970).
- 6. Wilson Robin. J and Beineke Lowell. W, Applications of Graph Theory, Academic Press, Inc. New York (1979).